Chelate-Controlled Additions of Titanium and Lithium Enolates to Chiral P-Formyl Esters - **Diastereofacial and Simple Diastereoselectivity**

Hubert Angert^[1], Ralf Schumacher, and Hans-Ulrich Reißig*

Institut fur Organische Chemie der Technischen Universitat Dresden, Mommsenstraße 13, D-01062 Dresden, Germany **Telefax:** (internat.) +49(0)351/463-7030 E-mail: reissig@cochO **1** .chm.tu-dresden.de

Received October 9. 1995

Key Words: P-Formyl esters / Titanium enolates / Lithium enolates / Silyl enol ethers / Chelate control

The aldol-type additions of metal enolates 2-Met derived from pinacolone to the chiral P-formyl carboxylate **la** were optimized. The highest *trans:cis* ratio (86: 14) of the products **3** was obtained when the trichlorotitanium enolate 2-TiC1, was combined with **la** precomplexed with one equivalent of $Ticl₄$. The lithium enolate 2-Li is rather unselective. The simple diastereoselectivity of prochiral enolates 4-Met was first examined with achiral P-formyl carboxylates **lb** and **lc.** Appropriate reagents made products with high *anfi* or with high

syn selectivity available when the unbranched aldehyde **lb** was the electrophile. In contrast, the sterically more hindered aldehyde **lc** provided *syn* products with all enolates 4-Met employed. Finally, chiral aldehyde **la** was combined with prochiral enolates 4-Met. Conditions could be found which furnished either the *trans/anti* or the *trans/syn* product **7** with good selectivity. The results are discussed and compared with reactions of related metal enolates with aldehydes capable of chelate formation.

Chelate-controlled additions of Lewis acidic organometallic reagents to alkoxy- or amino-substituted carbonyl compounds very often provide functionalised alcohols with excellent diastereoselectivity^[2]. Since not much has been **known** about the steering effect of other functional groups, we systematically studied reactions of β -formyl carboxylates 1 with allylsilanes/ $TiCl_4^{[3]}$, MeTiCl₃^[3], cuprates, and Grignard reagents^[4]. For all these reactions the primary addition products were directly cyclised to a mixture of *trans/ cis* y-lactones which are synthetically valuable compounds and which also allow rather straightforward structural assignments. The preferential formation of *trans* γ -lactones indicates that seven-membered ring chelates are involved in the addition reaction and that an ester function can serve as a surprisingly effective ligand.

More recently, the Mukaiyama reaction of silyl enol ethers with **1** in the presence of Lewis acids was investigated^[5]. We studied the dependence of the selectivity on the Lewis acid, the β -formyl carboxylate $\mathbf{1}^{[5]}$, and the silyl enol ether^[6] employed and found that *trans* γ -lactones are formed with good to excellent selectivity when chelate control can be assumed. This method could recently be applied to a short and highly diastereoselective synthesis of the pheromone (+)-eldanolide^[6] which also proved that no racemisation of enantiomerically enriched P-formyl carboxylates occurs under the Mukaiyama conditions. However, the standard promotor TiCL, the silyl enol ether 2- SiMe_3 (derived from pinacolone) and the simplest chiral aldehyde of this series **la** furnished y-lactone **3** with a rather moderate *trans:cis* selectivity of 71:29 (entry 1, next paragraph). In this report we disclose our experiments designed to improve this moderate selectivity. For this purpose other metal enolates were added to **la.** We also investigated the "simple" diastereoselectivity of prochiral metal enolates when added to achiral aldehydes **lb** and **lc.** Finally, the reactions of chiral aldehyde **la** with prochiral enolates were studied which combined the problem of simple and facial diastereoselectivity.

Diastereofacial Selectivity with Aldehyde 1 a

The tetrachlorotitanium enolate 2 -TiCl₄ was generated from pinacolone^[7] as described by Evans^[8] by treating the ketone with $TiCl₄$ and Hünig base^[9] at low temperature. Aldehyde **1a** was added to this wine-red solution at -78° C, and after acidic workup the expected y-lactone **3** was isolated in 76% yield. However, the addition was essentially unselective giving a *trans: cis* ratio of 48:52 (entry 2). This ratio could be dramatically improved when the Nakamura method $\left[10\right]$ for the generation of a trichlorotitanium enolate $2-\text{TiCl}_3$ ^[7] was chosen. Thus, treatment of silyl enol ether 2- SiMe_3 with TiCl₄ at room temperature and reaction of the resulting wine-red solution with aldehyde $1a$ at -78 °C after acidic workup furnished the y-lactone **3** with a *truns:cis* ratio of 74:26 (entry 3). This selectivity is similar to that **of** the Mukaiyama method (entry 1); however, it is known that

[a] See ref.[6]. - [b] See ref.[5].

under these conditions titanium enolates are usually not involved $[11]$.

A further remarkable improvement of the diastereofacial selectivity could be achieved when the titanium enolate **2-** TiCl₃ was allowed to react with aldehyde 1a *precomplexed* with one equivalent of $TiCl₄$ (entry 4). This variant provided quantitatively *translcis*-3 in a ratio of $86:14^{[12]}$.

For the highly stereoselective cuprate additions to aldehydes such as **la** chelate formation involving lithium ions was suggested $[4]$. Therefore, we were rather surprised that the pinacolone lithium enolate 2-Li as generated with **LDA** in tetrahydrofuran reacts with **la** with very moderate 60:40 *trans:cis* selectivity (entry 5). This ratio did not significantly change when diethyl ether was the solvent (61:39), and it increased to 69:31 only with pentane as solvent. However, in the latter case the reaction proceeded not very clean, and a 38% yield of impure product was obtained^[1].

Simple Diastereoselectivity with Aldehydes lb and lc

Since reactions of chiral aldehydes such as **la** with prochiral enolates such as 4-Met give up to four diastereomers (see below) we first investigated additions of these enolates to achiral aldehydes $1\mathbf{b}$ ($\mathbf{R} = \mathbf{H}$) and $1\mathbf{c}$ ($\mathbf{R} = \mathbf{M}e$). Reaction of the silyl enol ether 4-SiMe₃ with 1b under Mukaiyama conditions in the presence of TiCl₄ provided γ -lactone 5 after acidic workup with an excellent anti: $syn^{[13]}$ ratio of 90:10 (entry 1). Addition of titanium enolate $4-TiCl₃$ to precomplexed **1 b** afforded **5** with significantly lower simple diastereoselectivity (entry 2). As to be expected^[14], the addition reaction with lithium enolate 4-Li provided γ -lactone *5* with almost complete syn selectivity (entry 3). The relative configuration of anti-5 was confirmed by an X-ray crystal structure analysis^[15].

The reactivity of dimethyl-substituted aldehyde **lc** was much lower, and the addition of silyl enol ether $4\text{-}Sime_3$ to this compound proceeded at room temperature only. Hence, it is likely that not 4-SiMe₃ but transmetallated 4 -TiCl₃ is the reactive species under these conditions. This reaction provided y-lactone **6** with an excellent anti:syn ratio of 4:96 which is almost identical with that of the reaction of precomplexed **1c** with 4-TiCl₃ (entries 4 and 5). The high syn preference was even exceeded when lithium enolate 4-Li and 1c were combined (entry 6). An X-ray analysis^[15] confirmed the proposed structure of syn-6.

Facial and Simple Diastereoselectivity of Aldehyde 1 a

Reactions of 4-Met with chiral aldehyde **la** can provide four diastereomers 7a-d since a stereotriade^[16] with two new stereogenic centres is generated. All reactions (entries 1-4) are trans-selective favouring isomers **7c** and **7d.** Even the BF₃-promoted Mukaiyama reaction (entry 1) gave γ lactone **7** with a moderate trans:cis **(c+d:a+b)** ratio of 73:27. This is surprising since no chelate formation can be involved, and therefore we must conclude that silyl enol ether 4-SiMe₃ has an inherent tendency to provide *trans* γlactones. This has to be compared with $2\text{-}Sime_3$ which adds to **1a** with moderate *cis* selectivity with BF_3 promotion^[6]. The TiCl₄-promoted Mukaiyama reaction shows a much higher trans: cis ratio of 90:10 (entry 2). The anti: syn selectivities **(b+c:a+d)** for these two reactions are 86:14 and 44:56.

The best conditions for the synthesis of diastereomers **7c** and **7d** are described in entries 3 and 4. Thus, addition of $TiCl₄$ -precomplexed 1a to titanium enolate $4-TiCl₃$ furnished preferentially **7c,** whereas reaction of **l a** with lithium enoldte 4-Li gave **7d** with a selectivity of *85%.* By equili-

Table 1. The *trans: cis* selectivities of reactions of aldehyde 1a with enolates 2-Met and **4-Met**

La1 Concd. hydrochloric acid **was** employed for **workup.**

bration experiments with acid it could be secured that no *cis-trans* or *syn-anti* isomerisation occurs under the reaction conditions employed and during workup.

Whereas for *trans-cis* assignments the criteria as described earlier could be used, the determination of *anti-syn* configurations was not trivial. However, with the unequivocal structure determination of *anti-5* and *syn-6* by X-ray analyses their NMR data could be used as reference for the assignments as given to the γ -lactones **7a-d**^[1]. These were further corroborated by *unti/syn* selectivities of the reactions of related prochiral enolates with other aldehydes as reported in the literature.

Discussion

The diastereofacial selectivities *(trans: cis* ratios of products) of the reaction of aldehyde **la** with enolates 2-Met and 4-Met are collected in Table 1. These ratios reveal that enolates 4-Met generally have a higher propensity to form *trans* products. Interestingly, three of the reaction pairs reveal differences of ΔG^+ (as calculated from the product ratio at the reaction temperature) in the order of $2-2.5$ kJ/ mol. This may be taken as evidence that a common effect is operative, which cannot however be specified at the moment. **A** similarly clear trend was not observed for the Mukaiyama reactions of **la** with silyl enol ethers derived from acetophenone, propiophenone, and isobutyrophenone, respectively, which provided the corresponding γ -lactones with *trans:cis* selectivities in the range of $90:10$ to $96:4^{[5]}$. It should be of synthetic importance that a high level of stereoselectivity in the range of 90: 10 can be achieved by reaction of precomplexed aldehyde **la** with the titanium enolates 2-TiCl₃ and 4-TiCl₃. These results emphasize the importance of chelate formation by the strong Lewis acid

TiC14 which fixes the conformation of **la.** Attack of the titanium enolates on the open side of the chelate leads to preferential formation of *trans* y-lactones.

^[a] $\Delta\Delta G^+ = \Delta G_{cisttrans}^*$ *n*- $\Delta G_{cisttrans}$. $- A G_{cisttrans}^*$ *A*- Δ ₁. - ^[b] Reaction temperature -40°C.

The lithium ion of the enolates is apparently not a very efficient Lewis acid to form chelates of similar structure. This is in contrast to the results obtained with cuprates "R₂CuLi" where excellent *trans* selectivities could be obtained. A reason for this striking difference could be the negatively charged enolate oxygen whch may "quench' the Lewis acidity of the reagent to a high extent. The simple diastereoselectivities as observed with enolate 4-Met are more difficult to interpret. For a better comparison the *anti: syn* selectivities of the reactions of aldehydes **lb, la,** and **lc** with enolate 4-Met are collected in Table 2. The general preferential formation of *syn* adducts when lithium enolate 4-Li was treated with these aldehydes is in perfect accordance with literature examples of (Z) -enolates which are supposed to add via cyclic chair-type transition states^[14].

Table 2. The *anti:syn* selectivities of reactions of aldehydes **lb, la,** and **lc** with enolate 4-Met

4-Met Met	1b anti: syn	1а anti: syn	1c anti: syn
SiMe ₂ /BF		86:14	
$SiMe$. $TiCla$	90:10	44:56	4:96
TiCl ₁ /TiCl ₄	81:19	94:6	5:95
Li	3:97	< 1:99	< 1:99

The simple diastereoselectivity of the Mukaiyama aldol reactions strongly depends on the structure of the silyl enol ether and the aldehyde. The fact that $4\text{-}SiMe₃$ reacts with aldehyde **1 b** with excellent *anti* selectivity coincides with its

similarly selective addition to 2-methylpropanal^[17]. However, for an α -alkoxy-substituted aldehyde a complete lack of *anti-syn* selectivity was reported although perfect chelate control could be achieved in this example^[18]. The gradual change from high anti selectivity of the reaction with **lb** via unselective addition to **la** to excellent *syn* selectivity of the aldehyde **lc** underlines the sensitivity to structural effects which is in accordance with literature experience^[17]. Possibly, in the reaction of the sluggishly adding aldehyde **lc** not the silyl enol ether but the corresponding titanium enolate $4-TiCl₃$ is the actual reactive species. The fact that aldehyde **la** and prochiral silyl enol ethers combine with rather low simple diastereoselectivity was already reported for the addition of **(Z)-1-phenyl-1-(trimethylsi1oxy)propene** which provided γ -lactones in an *anti*:syn ratio of 40:60^[5].

Reaction of trichlorotitanium enolate $4-TiCl₃$ with aldehydes **lb** and **la** displays moderate to good *anti* selectivity while sterically more hindered **lc** reacts with excellent *syn* selectivity. This puzzling behaviour has to be compared with related reactions of 4-TiCl₃ with other aldehydes capable of chelate formation. The general tendency of trichlorotitanium enolates to syn-selective additions was sustained when 4-TiCl₃ was treated with α -alkoxy aldehydes, however, with no chelate control^[18]. This fits our results with aldehyde **1c.** When the α -alkoxy aldehydes were precomplexed with $TiCl₄$ and then allowed to react with 4-TiCl₃ a moderate *anti* selectivity under excellent chelate control was reported^[18]. We found *anti*-selective reactions with aldehydes **lb** and **la.** Possibly, aldehydes that are engaged in chelate formation undergo *anti*-selective reactions with $4-TiCl₃$ whereas conditions which allow binding of a Lewis acidic centre to the aldehyde oxygen only support syn-selective additions. Chelate formation of **lc** may be disfavoured due to the higher degree of substitution of this aldehyde. The inherent *syn* selectivity of trichlorotitanium (Z)-enolates may be explained by a cyclic transition state similar to that of the corresponding lithium enolates. Acyclic transition states may be involved in reactions leading to *anti* products $-$ as usually discussed for Mukaiyama reactions. However, no

 $(Met = S_1Me_3, TiCl_3)$

straightforward explanation reconciling all observed effects can currently be presented.

Nevertheless, our results with enolates 2-Met and 4-Met open the way to stereocontrolled preparation of valuable intermediates. Of particular importance should be the selective synthesis of compound 7c because the stereotriade^[16] incorporated in this γ -lactone is rather difficult to obtain by other methods^[19].

Support of this work by the *Deutsche Forschungsgemeinschaft* and the *Fonds der Chemzschen Industrie* is most gratefully acknowledged.

Experimental

For general information see ref.^[5]. All reactions were performed under nitrogen in a flame-dried flask, and the components were added by means of a syringe. All solvents were dried by standard methods. - Chromatography: silica gel 60 $(0.063-0.200$ mm, E. Merck). $-$ A Büchi kugelrohr apparatus was used for distillation of small amounts of substances. - **'H** (13C) NMR: Bruker **AC** 300, 300 (75.5) MHz, internal standards chloroform ($\delta = 7.26$ and 77.0) or tetramethylsilane ($\delta = 0.00$). Missing signals of minor isomers were hidden or too weak. $-$ IR: Perkin-Elmer 325.

Reaction of **1a** *with* **2-TiCl₃: To a solution of 0.345 g (2.00 mmol)** of silyl enol ether $2\text{-}Sime_3$ in 10 ml of dichloromethane 0.379 g (2.00 mmol) of TiCl₄ was added at room temp. After stirring for 30 min at this temp. and cooling to -72° C, 0.390 g (3.00 mmol) of P-formyl carboxylate **la** was added. The reaction mixture was stirred for 10 min, hydrolyzed with 2 ml of 50% aqueous sulfuric acid, the cooling bath was removed, and stirring was continued for 30 min. Extractive workup (H_2O/CH_2Cl_2) , drying (Na_2SO_4) , evaporation of solvent, and bulb-to-bulb distillation (110°C/0.02 Torr) of the residue provided 0.291 g (73%) of **3** *(trans:cis* = 74:26). For spectroscopic and analytical data of **3** see ref.['].

Lewis Acid-induced Addition of Titanium Enolates 2-TiCl₃ and 4-TiCl₃ to *ß-Formyl Carboxylates* **1a-c.** - *General Procedure 1*: To a solution of 1 (2.00 mmol) in 10 ml of dichloromethane TiCl₄ (2.00 mmol) was added at temperature T_1 (see individual entries). The mixture was warmed up to temperature T_2 within 15 min, and the titanium enolate (3.00 mmol, generated as described above) was slowly added. After 1 h at T_2 50% aqueous sulfuric acid (2 ml) was added, the cooling bath was removed, and the mixture was stirred for 30 min. Extractive workup (H_2O/CH_2Cl_2) , drying (Na_2SO_4) , and evaporation of solvent provided the crude products which were further purified by bulb-to-bulb distillation, unless otherwise noted. The ratios of isomers did not significantly change during purification.

Addition of Lithium Enolutes 2-Li *and* 4-Li *to P-Formyl Carhoxylates* **la-c.** - *General Procedure 2:* A solution of diisopropylamine (2.20 mmol) in 2 ml of tetrahydrofuran was treated with n-butyllithium (2.20 mmol, 1.7-2.5 **M** solution in hexane) at -78 °C. After 20 min the ketone (2.00-2.20 mmol, dissolved in 2 ml of THF) was slowly added with stirring. The mixture was further stirred for 20 min at the given reaction temp. before the β formyl carboxylate **1** (2.00-2.10 mmol) was added. After stirring for 10 min at the same temp. 50% aqueous sulfuric acid (2 ml) was added, and the mixture was worked up as described in general procedure 1 (extraction with diethyl ether).

Lewis Acid-induced Addition of Silyl Enol Ethers 2-SiMe₃ and 4-SiMe₃ to *B-Formyl Carboxylates* **1a-c.** – *General Procedure 3:* To a solution of **1** (2.00 mmol) in 10 ml of dichloromethane the Lewis acid (2.00 mmol) was added at temp. *T,.* The mixture was warmed up to temperature T_2 within 15 min, and the silyl enol ether (3.00) mmol, dissolved in 7 ml of dichloromethane) was slowly added. After 1 h at T_2 50% aqueous sulfuric acid (2 ml) was added, and the mixture was worked up as described in general procedure 1.

5-(3,3-Dimeth~~l-2-oxobutyl)-4,5-dihydro-d-methyl-Z(3HJfuranone (3): According to general procedure 1 ($T_1 = -60$, $T_2 =$ -40°C) the reaction of P-formyl carboxylate **la** with 3.00 mmol of 2-TiCl₃ furnished 0.395 g (100%) of 3 *(trans:cis* = 86:14) as colourless oil with b.p. $100^{\circ}C/0.02$ Torr. - According to general procedure 2 pinacolone (2.00 mmol) was allowed to react with **la** (2.00 mmol) at -78°C affording 0.290 g (73%) of 3 *(trans:cis* = 60 :40).

4.5-Dihydro-5- (I **I** *3,3- trimethyl-2-oxobutylj -2 (3H) ;furanone* **(5):** According to general procedure 3 ($T_1 = -60$, $T_2 = -40$ °C) the reaction of β -formyl carboxylate **1b** with silyl enol ether 4-SiMe₃ and TiCl₄ provided 0.290 g (73%) of 5 (anti:syn = 90:10) as partially crystalline oil with b.p. 110°C/0.01 Torr. After recrystallization from diethyl ether crystals were obtained (m.p. $62-64^{\circ}$ C) which could be used for an X-ray analysis *(anti:syn > 97:3)*. - IR (film): $\tilde{v} = 2980, 2940, 2920, 2880$ cm⁻¹ (C-H), 1780, 1700 (C=O). H), 3.19 (qd, *J* = 7/9 Hz, 1 H, 1'-H), 2.58-2.50 (m, 2H, 3-H), 2.37 (mc, lH, 4-H), 1.94 *(m,* lH, 4-H), 1.17 (s, 9H, tBu), 1.05 (d, *J=* 3.26 (qd, *J* = 7/9 Hz, I H, 1'-H), 2.57-2.47 (m, **2H,** 3-H), 2.26 (m_c, 1 H, 4-H), 1.90 (m_c, 1 H, 4-H), 1.27 (d, J = 7 Hz, 3 H, 1'-CH₃), 1.17 (s, 9H, tBu). $-$ ¹³C NMR, *anti*-5: δ = 216.2 (s, C=O), 176.2 26.1 (2 t, C-3,4), 13.8 **(q,** l'-CH3); *syn-5: 6* = 216.9 (s, C=O), 176.5 26.3 (2 t, C-3,4), 16.5 (q, 1'-CH₃). - C₁₁H₁₈O₃ (198.3): calcd. C 66.64, H 9.15; found C 66.89, H 9.24. $-$ ¹H NMR (300 MHz), *anti*-5: δ = 4.67 (dt, *J* = 6.5/9 Hz, 1H, 5-7 Hz, 3H, 1'-CH₃); $syn-5$: $\delta = 4.60$ (dt, $J = 6.5/9$ Hz, 1H, 5-H), **(s,** C-2), 81.9 (d, *C-5),* 44.7, 25.9 **(s, q,** tBu), 44.5 (d, C-l'), 28.7, **(s,** C-2), 82.6 (d, C-5), 44.9 (d, C-5'), 44.8, 26.1 **(s,** 9, tBu), 28.7,

According to general procedure 1 ($T_1 = -60$, $T_2 = -40$ °C) the reaction of **1b** with 3.00 mmol of 4-TiCl₃ furnished 0.305 g (77%) of 5 $\text{(anti:syn = 81:19)}$ as partially crystalline oil.

According to general procedure 2 **2,2-dimethyl-3-pentanone** (2.20 mmol) was allowed *to* react with **lb** (2.10 mmol) at 0°C affording 0.340 g (82%) of **5** *(anti:syn* = 3:97) after drying in vacuo (80 \degree C/1 Torr) with m.p. 36–38 \degree C.

4,5-Dihydro-4,4-dimethyl-5-(1,3,3-trimethyl-2-oxobutyl)-2(3H)*furanone* (6): According to general procedure 3 ($T_1 = 0$, $T_2 =$ 25 °C) the reaction of β-formyl carboxylate **1c** with silyl enol ether 4-SiMe₃ and TiCl₄ provided after drying in vacuo (70 $^{\circ}$ C/0.01 Torr) 0.400 g (88%) of 6 (anti:syn = 4:96) with m.p. $114-115$ °C. - IR (film): $\tilde{v} = 2970, 2940, 2920, 2880 \text{ cm}^{-1} (\text{C}-\text{H}), 1780, 1695 (\text{C}= \text{O}).$ 3.26 (qd, $J = 7/9.5$ Hz, 1H, 1'-H), AB system $(\delta_A = 2.46, \delta_B = 1.54)$ (s, 9H, tBu), 1.09, 1.03 (2 **s,** each 3H, 4-CH3); **anti-6: 6** = 4.36 (d, NMR, *syn-6:* 6 = 217.0 (s, C=O), 175.2 (s, *C-2),* 89.1 (d, C-5), 45 *3* 22.2 (2 q, 4-CH₃), 16.9 (q, 1'-CH₃); *anti*-6: δ = 45.9 (t, C-3), 39.9 (d, C-1'), 20.9 (q, 4-CH₃), 14.9 (q, 1'-CH₃). - C₁₃H₂₂O₃ (226.3): calcd. C 69.00, H 9.80; found C 68.95, H 9.86. $-$ ¹H NMR (300 MHz), *syn*-6: δ = 4.54 (d, *J* = 9.5 Hz, 1H, 5-H), 2.28, *JAB* = 17 Hz, 2H, 3-H), 128 (d, *J=* 7 Hz, 3H, l'-CHy), 1.24 $J = 10.5$ Hz, 1 H, 5-H), 3.32 (qd, $J = 7/10.5$ Hz, 1 H, 1'-H). $-$ ¹³C **(t,** C-3), 44.4, 27.8 **(s,** q, tBu), 41.3 (d, C-l'), 394 **(s,** C-4), 26.1.

According to general procedure 1 $(T_1 = 0, T_2 = 25^{\circ}\text{C})$ the reaction of 1c with 3.00 mmol of 4-TiCl₃ furnished after drying in vacuo (70 °C/0.01 Torr) 0.390 g (86%) of 6 $(\text{anti-syn} = 5:95)$ with m.p. 104-109 °C. After recrystallization from diethyl ether crystals were obtained (m.p. 109-111°C) which could be used for an Xray analysis *(anti:syn* < 1 :99).

4.5-Dihydro-4-methyl-5- (I .3.3-trimethyl-2-oxobutyl)-2 (3H) furanone (7): According to general procedure 3 $(T_1 = -78, T_2 =$ $-78\textdegree$ C) the reaction of β -formyl carboxylate **1a** with silyl enol ether 4-SiMe₃ and $BF_3 \cdot OEt_2$ provided 0.270 g (64%) of 7 $(a:b:c.d = 5:22:64:9)$ with b.p. 120°C/0.02 Torr. - IR (film): $\tilde{v} =$ 2980, 2940, 2920, 2880 cm⁻¹ (C-H), 1780, 1700 (C=O). - ¹H NMR (300 MHz): **6** = 4.63 (dd, *J* = 5/10 **IIz,** 0.05H, 5-H, **a),** 4.58 (dd, *J=* 4.5'11 Hz, 0.2211, 5-H, **b),** 4.30 (dd, *J=* 5.5/9.5 Hz, 0.64 H, 5-H, **c**), 4.26 (dd, $J = 5.5/8.5$ Hz, 0.09 H, 5-H, d), 3.27 (qd, *J=* 7/8.5 Hz, 0.09H, 1'-H, **d),** 3.22 (qd, *J=* 7/9.5 Hz, 0.64H, 1'- 17.5 Hz, 0.09 H, 3-H, d), $2.53-2.28$ (m, 1 H, 4-H), 2.20 (dd, $J=7/$ H, **c),** 275 (dd, *J=* 9/17.5 Hz, 0.64H, 3-H, **c),** 2.71 (dd, *.I= 8.5/* 17.5 Hz, 0.64H, 3-H, **c),** 2.16 (dd, *J=* 6.5/17.5 Hz, 0.09H, 3-H, **d),** 1.24 (d, *J=* 7 Hz, 0.27H, l'-CH3, **d),** 1.22 (d, *J=* 8 Hz, 1.92H, 4-CH3, **c),** 1.18 **(s,** 0.81H, ~Bu, **d),** 1.16 **(s,** 5.76H, tBu, **c),** 1.10 (d, *J=* 7 Hz, 0.27H, 4-CH3, **d),** 1.09 (d, *J=* 7 Hz, 1.92H, 1'-CH3, **c),** $-$ ¹³C NMR, **c**: δ = 215.9 (s, C=O), 175.5 (s, C-2), 88.5 (d, C-5), 44.6, 25.8 **(s, q,** Bu), 36.5 (t, C-3), 32.7 (d, C-4), 19.9 **(q,** 1'-CH,), 14.1 **(a, 4-CH₃); d**: δ = 216.7 **(s, C**=O), 175.9 **(s, C-2), 88.0 (d, C**-*5),* 44.8, 26.0 **(s,** q, tBu), 44.1 (d, C-l'), 36 3 (t, C-3), 33.5 (d, C-4), 19.5 (q, 1'-CH₃), 16.2 (q, 4-CH₃). - C₁₂H₂₀O₃ (212.3): calcd. C 67.89, H 9.50; found C 67.93, H 9.54.

According to general procedure 3 ($T_1 = -60$, $T_2 = -40$ °C), the reaction of 1a with silyl enol ether 4-SiMe₃ and TiCl₄ furnished 0.289 g (68%) of **7 (a:b:c:d** = 5:5:39:51).

According to general procedure 1 ($T_1 = -60$, $T_2 = -40$ °C) the reaction of 1a with 3.00 mmol of 4-TiCl₃ provided 0.380 g (90%) of 7 (a:b:c:d = $1:9:85:5$).

According to general procedure 2 **2,2-dimethyl-3-pentanone** (2.20 mmol) was treated with **1a** (2.10 mmol) at $-78 \degree \text{C}$ affording 0.313 **g** (70%) **(a:b:c:d** = 15:0:0:85).

- ^[1] H. Angert, Dissertation, Technische Universität Dresden, 1995.
- ^{2a}l M. T. Reetz, *Angew. Chem.* **1984**, 96, 542–555; *Angew. Chem. Int. Ed. Engl.* **1984**, 23, 556. ^[2b] M. T. Reetz, *Angew. Chem.* **1991**, *103*, 1559–1573; *Angew. Chem. Int. Ed. Engl.* **1991,** 30, 1531. [2]
- 1'1 **Pa]** T. Kunz, H.-U. ReiUig, *Angew: Chem.* **1988,** *100,* 297-298; *Angew. Chem. Int. Ed. Engl.* **1988,27,** 268-270. [3b1 T. Kunz, A Janowitz, H.-U. ReiBig, *Chem. Bel:* **1989,** *122,* 2165-2175.
- [41 H.-U. ReiDig, H. Angert, T. Kunz, A. Janowitz, G. Handke, **E.** Bruce-Adjei, *3: Org. Chem.* **1993,** *58,* 6280-6285.
- **Is]** H. Angert, T. Kunz, H.-U. ReiBig, *Tetrahedron* **1992,** *48,* $5681 - 5690.$
- *L6]* H. Angert, R. Czenvonka, H.-U. ReiDig, *Liebigs Ann., in press.* Definite structures for the intermediate tetrachloro- and trichlorotitanium enolates are not known. However, it can be assumed that species with Ti-0 bonds are involved.
- 1'1 D. **A.** Evans, D. L. Rieger, M. T. Bilodeau, F. Urpi, *J. Am. Chem. SOL.* **1991,** *113,* 1047- 1049.
- r91 *S.* Hiinig, M. Kiessel, *Chem. Ber.* **1958,** *91,* 380-392.
- [lo] ['OaI E. Nakamura, J.-i. Shimada, Y. Horiguchi, I. Kuwajima, *Tetrahedron Lett* 1983, *24,* 3341 -3342. **S.** Yamago, **D.** Machii, E. Nakamura, *1 Org. Chern.* **1991,** *56,* 2098-2106.
- [I1] M. T. Reetz, B. Raguse, C. F. Marth, H. M. Hiigel, **T.** Each, D. N. A. **Fox,** *Tetrahedron* 1992, *48,* 5731-5742.
- $[12]$ This may be not a general effect: For the corresponding ethyl-substituted aldehyde no significant difference in stereoselectivity was observed regardless whether uncomplexed or precomplexed aldehyde was treated with 2 -TiCl₃. For details see ref.^{[1}]
- **[I3]** For definition of *synkanti* **see:** S. Masamune, *S.* **A.** Ali, D. L. Snitman. D. **S.** Garvev. *Angew. Chem.* **1980. 92.** 573-575: *An-*
- *fw. Chem. Int. Ed. Ekgl.* **lk0,** *19,* 557. [14] **4a]** C. **JI.** Heathcock in *Aswnmetric Svnthesis* (Ed.: J. D. Mor-rison), Academic Press, New York, 1984, vol. '3, chapter 2. -

C. H. Heathcock in *Comprehensive Organic Synthesis* (Eds.: **B.** M. Trost, I. Fleming), Pergamon Press, Oxford, **1991,** vol. 2, chapter 1.6.

- **[Is]** H. Angert, R. Schumacher, H.-U. ReiBig, **S.** Foro, H. J. Lindner, *Z. Kristnllogr.,* in press.
- **[16]** R. W. Hoffmann, *Angew. Chem.* **1987,** *99,* 503-517; *Angew. Chem Int. Ed. Engl.* **1987,** *26,* 489.
- **[171** *C.* H. Heathcock, K. T. Hug, L. **A.** Flippin, *Tetrahedron Lett.*
- **1984**, 25, 5973–5976.

^[18] M. T. Reetz, K. Kesseler, A. Jung, *Tetrahedron* **1984**, *40*,

^[19] J. A. Marshall, J. F. Perkins, M. A. Wolf, *J. Org. Chem.* **1995**,

⁶⁰ 5556–5559 and references cited 4327-4336.
- 60, 5556-5559, and references cited.

[95156]